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Analysis of Non-Meshable Automatically 
Generated Frame Fields

Problematic Examples

The Nautilus – Limit Cycles

Frame Fields Automatically
Generate Good Meshes in 2D

Kowalski et al. 2013

Top: A comparison between element quality (scaled Jacobian) between a frame field generated 
mesh (a) and on generated by an unstructured method (b).

Abstract
Recent methods for frame field generation in two and three dimensions are reviewed. Frame 
fields generated automatically in 2D and 3D are analyzed with respect to quad and hex mesh 
generation. Problems are identified with automatically generated frame fields that prevent 
mesh generation via current methods. Specifically, there exist geometries that contain limit 
cycles and cannot be parameterized or decomposed by separatrices of the frame field. In 3D, 
singularity lines occur that minimize the field curvature but do not align with the frame field. 
These types of singularities make it impossible to create a mesh that both follows the frame 
field, and simultaneously respects the singularity as an irregular node in the mesh. Specific 
examples are presented that illustrate these problems. For each example, streamlines are used 
to help visualize properties of the frame fields, problems are analyzed, and options to 
potentially mitigate such problems are discussed.

Frames and Representation Vectors

Kowalski et al. 2013

A Frame field defines a frame at each point of the geometry. Each Frame can be 
represented by a unique vector as shown above.

2D Frame Field Meshing Algorithm

Kowalski et al. 2013

The Geometry is Tri-Meshed (a). A frame (representation vector) is defined on each point 
of the boundary and Laplace’s equation is solved to propagate information onto the 
interior (b) 

Singular Triangles Non-singular Triangle

Kowalski et al. 2013

2D Singularities

Singularities in a discrete 2D frame field correspond to triangular faces where a frame 
makes a full rotation when traversing around the triangle. Frames between nodes are 
determined by linear interpolation. A counterclockwise rotation corresponds to a three 
valent singularity (left). A clockwise rotation corresponds to a 5 valent singularity (middle)

Frame Fields in 3D

In 3D, frame are represented by functions, and the change in orientation between two 
frames is given by the L2 distance between their representative functions

Automatic Hex Meshing with Frame Fields

Neiser et al. 2011
Jiang et al. 2014

Li et al. 2012

State-of-the-art methods that produce all hex meshes from frame fields. Though these 
methods show promise, they can fail on even very simple geometries.

The nautilus frame field (left) contains limit cycles (yellow spiral, middle) that prevent a 
proper parameterization or decomposition of the geometry. If an additional interior 
constraint is introduced (yellow line, right), the resulting frame field decomposes the 
geometry into 4 sided regions
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Ideas on how to fix it:

Results…

The Notch – Singularities not “Parallel” 
to the Frame Field

The notch geometry (left) results in a problematic 
Frame field because the geometric constraint (curved
surface) that causes the singularities on the top 
surfaces to occur ends at a concave curve. This results in a singularity which is not parallel to 
the surrounding frame field (top right). It is impossible to associate this curve to either a 
three (tan faces) or five valent (red faces) singularity in a hex mesh (bottom right).

Propagate the Concavity

If we propagate the constraint through the geometry we get a valid singularity graph 
(left). This frame field corresponds to an all hex mesh (right).

Blend the Concavity

If we blend the problematic concavity we also get a singularity graph (left) that 
corresponds to an all hex mesh (right). Note that if design restrictions prohibit a blend 
in the geometry, we can achieve the same mesh topology by simply treating the curve 
as a side.

Don’t Conform to Concave Face

If frames don’t conform to the boundary (right) we get a valid frame field (left) 
at the cost of lower quality elements along the boundary (mesh not show).

The problem of propagating boundary frames smoothly onto the interior of a 3D geometry 
is weakly formulated as an energy minimization problem. In an attempt to create frame 
fields with valid singularity graphs, we added a constraint to the objective function that 
penalized frames that were not parallel to a nearby singularity. For details on formulation of 
the objective function, see On Smooth Frame Field Design, Ray et al. 2015.

Constrain the Frames to 
follow the Singularities

A manually built hex mesh showing what might result if frames ran parallel to the singularity 
graph of the notch geometry. Notice the additional singularities.

Objective Function

Algorithm

This algorithm follows the frame field generation/smoothing algorithm from On Smooth 
Frame Field Design, Ray et al. 2015 with modification to include the singularity alignment 
constraint.

The proposed algorithm was unstable and 
led to chaotic behavior in the frame field

Future Directions
These simple examples as well as others 
demonstrate that current methods for 3D 
frame field generation do not guarantee that 
the frame field will correspond to an all hex 
mesh. However, since frame guided 
automatic hex meshing techniques do work 
on some geometries, it is important to 
determine necessary and sufficient for a 
frame field on a geometric domain to 
correspond to an all hex mesh. In the above 
examples, topological modifications to the 
geometric domain led to meshable frame 
fields. It is thus reasonable to believe that 
such necessary and sufficient conditions 
might be stated in terms of the topology of 
the geometric boundary. It is further 
important to explore a paradigm of how to 
satisfy the necessary and sufficient conditions 
by making topological decisions 
programmatically or by user guidance.


